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According to thermodynamics the irreversible entropy production of diffusive
relaxation processes diverges at the boundary to the vacuum, i.e., to a state of
vanishing particle density. By means of a multibaker map we point out that this
divergence is not present in the spatially discrete dynamics, which brings forth
the evolution equations of irreversible thermodynamics in the continuum limit.
In addition, we show that the irreversible entropy production of relaxation
towards a nonempty steady state is proportional to the decay rate of the
thermodynamic system subjected to absorbing boundary conditions. This
generalizes results of the escape rate formalism.
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condition; escape-rate formalism; multibaker maps.

1. INTRODUCTION

In summer 1997 we were sitting with Bob Dorfman and a few other friends
interested in chaotic systems and transport theory on a terrace close to
Oktogon in Budapest. While taking our (decaf) coffee after a very nice
Italian meal, we discussed about the logarithmic divergences in the entropy
production of systems with absorbing boundary conditions. It was guessed
at that time that the problem could be resolved by a careful investigation of



the physical interpretation of the absorbing boundary conditions. To our
knowledge a thorough analysis of this problem is still missing. We dedicate
it hereby to Bob on occasion of his 65th birthday.
The discussion was motivated by our joint interest in the escape-rate

formalism, (1–4) which identifies transport coefficients based on the asymp-
totic decay rate of an initial non-stationary density profile towards an
empty steady state selected by absorbing boundary conditions, i.e., for
systems where eventually all particles disappear. In this formulation the
relaxation problem has widely been studied in the context of Markov
chains (cf. the sections on survival probabilities in ref. 5, and on absorbing
states in ref. 6), as well as for deterministic chaotic systems. (7–9) However
the choice of an empty asymptotic state places severe constrains on the use
of absorbing boundary conditions in the calculation of the thermodynamic
entropy production. In particular, the thermodynamic entropy production
picks up logarithmically diverging boundary contributions when applying
the diffusion equation near the boundary. The vanishing of the density
leads then to the breakdown of the concept of an entropy-production
density in the framework of classical irreversible thermodynamics. Close
to a boundary at x=0 the absorbing boundary condition requires a den-
sity profile of the form r(x)=ax. For purely diffusive particle transport,
a neighborhood of size D gives then rise to the entropy production4

4 The Boltzmann constant is taken to be unity throughout this paper.

S (irr)(D) — F
0+D

0
dx D 1“xr

r
22 r=Da lim

dQ 0
ln
D

d
. (1)

In the present paper this logarithmic divergence of the thermodynamic
entropy production will be discussed from the point of view of spatially
extended chaotic systems whose transport properties fully agree with the
predictions of irreversible thermodynamics. The microscopic dynamics of
the system with absorbing boundaries is physically well behaved, and it
gives rise to a mesoscopic description where the thermodynamic densities in
small but finite volumes evolve according to master equations. In this
setting it is demonstrated that the mesoscopic description does not involve
diverging contributions to the (discrete) entropy balance. The divergences
only appear in the continuum limit where the master equation is approxi-
mated by an advection diffusion equation. Consequently, the diverging
terms in the entropy balance reflect the breakdown of the continuum
description at locations where the particle density vanishes. We are confi-
dent that this picture applies in general. However, to keep the calculations
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as transparent as possible, the discussion is given for isothermal multibaker
maps. The possibility for explicit results allows us in that case to also revisit
earlier results based on conditionally invariant measures characterizing
their chaotic dynamics, and to discuss how the various findings change
upon introducing a finite background density.
In Section 2, Eq. (1) is contrasted with the prediction of the irrever-

sible changes in an entropy based on the conditional density characterizing
the chaotic saddle forming the backbone of transport in open dynamical
systems. This prediction always yields finite values. The isothermal multi-
baker map is introduced in Section 3, where its entropy balance is also
worked out. Section 4 deals with the normal modes of the coarse-grained
time evolution. This allows us to address in Section 5 the origin of the log-
arithmic divergences in the entropy production from the point of view of
the multibaker map. The analysis makes use of the eigenvalues of the time-
evolution operator, (4, 10) which does not depend on the nature of the
asymptotic state. To underline this observation, we also discuss asymptotic
states with uniform nonzero densities, and point out that the presence of an
arbitrarily small background density in the asymptotic case turns the irre-
versible entropy production to be finite, but different from the prediction
based on the conditional density. In the concluding Section 6 these findings
are complemented by a discussion of the behavior of the entropy produc-
tion in systems relaxing towards a typical steady state of finite density as
compared to the case of small (or even vanishing) background densities
addressed in the main part.

2. ENTROPY PRODUCTION BASED ON CONDITIONAL INVARIANT

MEASURES REVISITED

One of the early studies of irreversible entropy production in determi-
nistic dynamical systems was based on the escape-rate formalism intro-
duced by Gaspard and Nicolis. (1) As a generalization of it, Breymann, Tél
and Vollmer (3) considered open dissipative dynamical systems in continu-
ous time. To characterize their irreversible features, they suggested to use
the entropy

s(t)=−F dx k (t)(x) ln k (t)(x) (2)

based on the normalized conditional phase-space density k (t)(x), describing
the probability to find a point which has not yet escaped the system by
time t at phase-space coordinate x. Because k (t)(x) is a single-particle
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property, s(t) can be considered as a specific entropy (total entropy per
number of particles). The initial condition is selected from an arbitrary
smooth distribution k (0)(x). As time goes on, the phase-space volume of k (t)

is exponentially shrinking as exp[−v(x) t], where the local phase-space
contraction rate v(x)=; li(x)−o is a smooth function of the coordina-
tes. (7) Here, o is the escape rate from the system, and li(x) are the local
Lyapunov exponents in the independent directions i in phase space
(cf. refs. 7 and 8 for detailed discussions of conditional invariant densities
and Lyapunov exponents). On its support the value of the conditional
density k (t)(x) is exponentially increasing due to its normalization. More
precisely, it increases like k (t+dt)(x)=exp[v(x) dt] k (t)(x) q (t+dt)(x), where
q (t+dt) is the characteristic function of the support at time t+dt. The
entropy s(t+dt) at time t+dt can be determined by inserting this relation
into Eq. (2):

s(t+dt)=−dt F dx v(x) k (t)(x) ev(x) dtq (t+dt)(x)

−F dx k (t)(x) ln [k (t)(x) q (t+dt)(x)] ev(x) dtq (t+dt)(x). (3)

In both integrals the decrease of the support of k is counterbalanced by the
factor exp[v(x) dt]. The first integral is the phase-space average v̄ of v(x).
For dtQ 0 the second one tends to the specific entropy s(t) at time t.
Hence, in the long-time limit the time derivative of the entropy

ds
dt
=−v̄=C

i
l̄i−o, (4)

is the difference of the sum of the average Lyapunov exponents l̄i on the
saddle, and the escape rate o from the saddle. The average is taken with
respect to the density k(x) of the conditionally-invariant measure. This
measure is time independent. Its support is the unstable manifold of the
chaotic saddle, i.e., the union of the never escaping orbits in the system.
The fact that the time derivative of s approaches a constant reflects the ever
refining fractal structures in the density due to the chaoticity of the
dynamics.
We now compare s(t) with a coarse-grained entropy s (cg)(t) computed

in an analogous way from a coarse-grained conditional density k (cg)(x; t),
which—incontrast tok—converges towardsa smooth stationarydistribution.
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The specific irreversible entropy production (irreversible entropy produc-
tion per particle) is then obtained as (cf. ref. 3)

P (irr) —
d
dt
[s (cg)(t)−s(t)]|||0

long times
o−C

i
l̄i. (5)

P (irr) is a specific quantity since s is specific, too. It measures the lack of
information on the microscopic state due to the finite resolution of the
coarse-grained description.
In systems with a reversible dynamics the phase-space contraction is

proportional to the average displacement of particles in the direction of
an applied field. (11–16) Consequently, in any open system with reversible
dynamics the sum of the average Lyapunov exponents on the chaotic
saddle is zero since the average number of steps in the direction of positive
phase-space contraction is the same as in the opposite. Therefore, its
specific irreversible entropy production amounts to the escape rate,

P (irr)=o. (6)

In the following we revisit this argument in the light of recent
developments (13, 17) dealing with general steady and nonsteady states rather
than only the decay to asymptotic states. We work out the irreversible
entropy production for an isothermal multibaker map with reversible
microscopic dynamics subjected to absorbing boundary conditions.

3. THE ISOTHERMAL MULTIBAKER MAP

Multibaker maps model particle transport in spatially extended
systems by a chain of mutually interrelated baker maps. (13, 14, 17–24) They
consist of N identical cells of width a and height 1 (the phase-space) in the
(x, p) plane. The cells are labeled by the index m (Fig. 1a). After each time
unit y, every cell is divided into three columns (Fig. 1b). Here we consider
the case when the right (left) column of width ar (al) is mapped onto a strip
of width a and of height l (r) in the right (left) neighboring cell. The middle
one, which is of width as, preserves its area, such that its image attains a
height s, and r+l+s=1. There are more general parameter settings con-
ceivable, but earlier work (13, 16, 17) showed that the associated macroscopic
behavior is then not compatible with irreversible thermodynamics.
The dynamics of the multibaker map models a microscopic dynamics

described in the single-particle phase space. It is deterministic, invertible,
chaotic, and mixing. (15, 25) To describe irreversible processes one follows the
coarse-grained densities rm obtained by averaging over the cells. (13, 14, 17) To
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Fig. 1. Graphical illustration of the action of the multibaker map of length L=aN on the
phase space (x, p) over a time unit y. (a) The mapping is defined on a domain of N identical
rectangular cells of size a×1, with boundary condition imposed in two additional cells 0 and
N+1. (b) The action of the map in any of the cells over time unit y is illustrated by the
deformation of the labels R, S and L in the three branches of the map ending up in cell m. The
average value of the density on the cells (strips) [cf. Eq. (7)] is given on the margins.

emphasize the particular choice of coarse-graining over the cells, the coarse-
grained densities are also called the cell densities. The dynamics of the
multibaker map is the same for all cells. There might be inhomogeneities in
the cell densities, but the evolution equations are translation invariant.

3.1. Evolution of the Cell Density

In order to find results consistent with non-equilibrium thermody-
namics we always consider initial conditions with a uniform density in
every cell m. As discussed in refs. 13, 16, 26 this is convenient from a tech-
nical point of view, and does not lead to a principal restriction of the
domain of validity of the model. Under such conditions the parameters r
and l can be considered as transition probabilities from a cell to its right
and left neighbor, respectively. After one step of iteration the densities r −m, i
on the strips i=R, S, L of cell m are (cf. Fig. 1b)

r −m, r=
r
l
rm−1, r −m, s=rm, r −m, l=

l
r
rm+1. (7)

The factors r/l and l/r give rise to local contraction or expansion of the
phase-space volume. One of the factors is larger than unity, and charac-
terizes a local contraction, while the other gives rise to an expansion.
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Since in every cell the density remains uniform in the horizontal direc-
tion, this update holds at all times such that the coarse-grained density dis-
tributions rm and r

−

m=rrm−1+srm+lrm+1 at the respective times n and
n+1 are related by the master equation

r −m=(1−r−l) rm+rrm−1+lrm+1. (8)

Multiplying the equation by y−1 and introducing the current

jm=
a
y
(rrm−lrm+1) (9)

through the right boundary of cell m, Eq. (8) appears in the form of the
continuity equation

r −m−rm
y
=−

jm−jm−1
a

. (10)

The current through the left boundary of cell m is the same as the current
flowing through the right boundary of cell m−1.

3.2. Diffusion, Drift, and the Macroscopic Limit

The transition probabilities r and l govern the evolution of the coarse-
grained density rm. In view of the master equation (8), the cell-to-cell
dynamics of the model is equivalent to the dynamics of an ensemble of
random walkers with fixed step length a and local transition probabilities r
and l over time unit y. In terms of the local drift v and diffusion coefficient
D the transition probabilities r and l can be expressed as (27)

r=
yD
a2
11+av

2D
2 , l=

yD
a2
11− av

2D
2 , (11)

such that the current appears in a form very close to its thermodynamic
counterpart, viz.

jm=
v
2
(rm+rm+1)−D

rm+1−rm
a

. (12)

The macroscopic limit expresses a separation of scales where density
gradients inside cells may be neglected, while density differences between
the cells and the temporal evolution of the cell densities are only taken into
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account in leading order. In other words, in this limit a° L=aN,
y° L2/D, L/v, and upon introducing the quasi-continuous spatial and
temporal variables x — am and t — yn, the current jm [Eq. (12)] takes the
form j(x; t)=v r(x; t)−D “xr(x, t), while Eq. (10) becomes “tr(x; t)=
−“x j(x; t)=−v “xr(x; t)+D “

2
xr(x; t). The macroscopic density evolves

according to the advection-diffusion equation.

3.3. Local Entropy Balance

The coarse-grained entropy of cell m is defined in terms of the coarse-
grained (cell) density rm as

Sm=−arm ln
rm

ra . (13)

In this equation ra is a constant reference density that is introduced for
dimensional reasons. It expresses the free choice of the origin of the
entropy scale. The entropy Sm is similar to s (cg) used in Section 2, but it is
more general since it is a local quantity characterizing cell m, which can be
shown to fulfill a local entropy balance in direct analogy to the one of
irreversible thermodynamics.(13, 14) Another difference is that the density rm
is normalized to the (time-dependent) numberN of particles in the system,
in contrast to k which is normalized to 1.
To derive the balance equation for (13) one identifies at any given time

the difference Sm−S
(G)
m of the coarse-grained and the fine-resolved Gibbs

entropy S (G)m as the information on the microscopic state of the system
which cannot be resolved in the coarse-grained description. The Gibbs
entropy of the multibaker cell is an analogous expression to (13). However,
it is evaluated with respect to the non-coarse-grained phase-space density
r(x), from which it is obtained by integrating −r(x) ln r(x)/rg over the
coordinate x in the cell. For a coarse-grained initial distributions the Gibbs
entropy coincides with the cell entropy initially (i.e., Sm=S

(G)
m ), and after

one time step the entropies become (cf. Fig. 1b)

S (G)
−

m =−a 5srm ln
rm

ra+rrm−1 ln 1
r
l
rm−1

ra
2+lrm+1 ln 1

l
r
rm+1

ra
26 (14)

and

S −m=−ar
−

m ln
r −m
ra . (15)

882 Vollmer et al.



For the multibaker dynamics the temporal change of the lack of
information was identified (3, 4, 13, 23) with the irreversible entropy production
DiSm, and the change (S

(G)−
m −S

(G)
m ) of the Gibbs entropy with the entropy

flux DeSm. Thus, for every cell one obtains the discrete entropy balance

S −m−Sm
y
=
DeSm
y
+
DiSm
y
, (16)

where the entropy flux is [cf. (14) and (15)]

DeSm
y
=
S (G)−m −S

(G)
m

y

=−
a
y
5(r −m−rm) ln

rm

ra+rrm−1 ln 1
r
l
rm−1

rm
2+lrm+1 ln 1

l
r
rm+1

rm
26 .
(17)

and the entropy production takes the form

DiSm
y
=
[S −m−S

(G)−
m ]−[Sm−S

(G)
m ]

y

=
a
y
5−r −m ln

r −m
rm
+rrm−1 ln 1

r
l
rm−1

rm
2+lrm+1 ln 1

l
r
rm+1

rm
26 . (18)

The density of irreversible entropy production is DiSm/(ay). Note that it
does not depend on the choice of the reference density ra. In the macro-
scopic limit all expressions (15)–(18) reduce to the respective predictions of
non-equilibrium thermodynamics.(13, 14, 16)

3.4. Global Entropy Production

The escape-rate formalism addresses the balance of the global entropy
of the chain. The global coarse-grained entropy (the direct analog of s (cg) of
Section 2) is

Stot= C
N

m=1
Sm=−a C

N

m=1
rm ln

rm

ra . (19)

The associated global entropy production rate along the chain is S (irr)=
;N
m=1 DiSm/y, and the total specific irreversible entropy production is
obtained as

P (irr)=
S (irr)

N
=

;N
m=1 DiSm
yN

(20)
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where N=;N
m=1 arm is the number of particles in the chain at time ny.

The total entropy production can be rearranged to take the form

S (irr)=−
a
y

C
N

m=1
r −m ln

r −m
rm
+
a
y
1 rr0 ln

rr0
lr1
−lrN+1 ln

rrN
lrN+1
2

+
a
y

C
N−1

m=1
(rrm−lrm+1) ln

rrm
lrm+1

, (21)

where r0 and rN+1 are the densities in the boundary cells. The total entropy
production can conveniently be split into four terms S (irr)=S (irr)t +S

(irr)
b +

S (irr)d +S
(irr)
mix . The first one

S (irr)t =−
a
y

C
N

m=1
r −m ln

r −m
rm

(22)

is the contribution from the temporal evolution of the density. The contri-
bution proportional to ln(r/l) of the last term in (21) contains the irrever-
sible entropy production

S (irr)d =N
r− l
y
ln
r
l
QN

v2

D
(23)

due to the presence of the drift v. It does not depend on the particular
density distribution so that we can immediately specify its macroscopic
limit (indicated by Q ). By means of (9) and (10) the remaining part can be
written as a sum of two terms. One of them,

S (irr)mix=−
a
y

C
N

m=1
(r −m−rm) ln

rm

ra (24)

characterizes the contribution of mixing of the neighboring densities. In
order to arrive at this form the ratio rm/rm+1 of the densities appearing at
the right hand side of (21) was written as [(rm/ra)/(rm+1/ra)]. The rest

S (irr)b =
a
y
5rr0 ln

rr0
lra+lrN+1 ln

lrN+1
rra −lr1 ln

lr1
rra−rrN ln

rrN
lra
6 (25)

yields the boundary contribution. We shall be interested in the difference
between S (irr) and S (irr)d , called the irreversible entropy production S

(irr)
relax due

to the relaxation process,

S (irr)relax — S
(irr)
t +S

(irr)
mix+S

(irr)
b . (26)
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4. NORMAL MODES OF THE COARSE-GRAINED TIME EVOLUTION

4.1. Decaying Modes and the Steady State

We are interested in the evolution of the density distributions r (n)m
subjected to a fixed constant boundary condition

r (n)0 =r
(n)
N+1=rB (27)

at any time step n. Asymptotically, r (n)m always approaches the uniform
density rB. The time evolution of the density can be explored by expanding
the deviation r (0)m −rB of the initial distribution r

(0)
m from the asymptotic

state rB in terms of normal modes d
[n](n)
m . They vanish at both boundaries,

and only change in amplitude but not in their shape,

d[n](n+1)m

d[n](n)m

=exp(−cny). (28)

The integer n labels different modes. There are as many independent modes
as the number N of the cells, such that n=1,..., N. The normal modes take
the respective forms

d[n](n)m ’ exp (− cnny) 1
r
l
2m/2 sin 1 pn

N+1
m2 . (29)

Substituting the ansatz into Eq. (8) and rearranging the trigonometric
terms, one finds the decay rates

cn=−
1
y
ln 51−(r+l)+2`rl cos 1 pn

N+1
26

Q

p2D
L2
n2+

v2

4D
. (30)

For a general initial condition the asymptotic decay is governed by the
slowest non-vanishing decay rate, c1. It coincides with the escape rate o of
the transiently chaotic motion (7, 8) inside the chain (i.e., o — c1). (1, 20, 28)

The macroscopic limit of the decay rates has a clear physical content.
For vanishing v (1, 2) it states that relaxation is related to the typical diffusive
decay rate D/L2 of structures of size L. The factor p2 characterizes the
geometry of the considered region (a band of width L with straight, parallel
walls in our example). More complicated geometries have been studied by
Gaspard, (18) and Kaufmann and collaborators. (29, 30)

For a biased motion v ] 0 the drift singles out one side of the system
and sweeps out the particles in that direction. This mechanism dominates
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when the time L/v to cross the system by the biased motion becomes
shorter than the typical time scale L2/D of diffusion, i.e., for

Pe — :vL
D
: (31)

much larger than unity. In the context of hydrodynamics, Pe is called
Pèclet number. (31) It measures the importance of advection relative to dif-
fusion. Strong diffusive effects are indicated by small Pèclet numbers. For
fixed finite v and D, the Pèclet number is always large for a sufficiently
large system size L.

4.2. Long-Time Relaxation and the Slowest Mode

For sufficiently long times n± 1, the coarse-grained density closely
approaches the first normal mode. Therefore, the density can be expressed
as

r (n)m — rB+(N(n)−N(.)) km, (32)

where N(n)=;N
m=1 ar

(n)
m and N(.)=rBL is the particle number in the

background which is also the asymptotic particle number in the system.
Moreover,

km=
A

L
1 r
l
2m/2−(N+1)/4 sin mp

N+1
(33)

is the coarse-grained conditionally-invariant density (the analog of
k (cg)(x; t) used in Section 2). It is normalized to unity (1 — a;N

m=1 km),
by virtue of the normalization constant A, which is invariant under the
exchange of r and l. Carrying out the summation of the complex geometric
series defined by (33) one finds

A=L
1− exp(−oy)

a`rl

1

1 r
l
2 (N+1)/4+1 r

l
2−(N+1)/4

1

sin
p

N+1

Q

p

2

1Pe
2p
22+1

cosh
Pe
4

=o
L2

2pD cosh
Pe
4

. (34)
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Here, the relation (r/l)N/4=(1+av/D)N/4Q exp(Pe/4) has been used to
evaluate the macroscopic limit. In view of (32) and (34) the macroscopic
limit of the asymptotically decaying density (32) takes the form

r(x, t)=rB+
A

L
(N (t)−N (.)) exp 1Pe 2x−L

4L
2 sin px

L
. (35)

5. BOUNDARY CONTRIBUTIONS TO THE IRREVERSIBLE ENTROPY

PRODUCTION

5.1. Absorbing Boundaries

In the case of a long-term relaxation towards an empty state (r0=
rN+1=rB=0), Eq. (28) holds for the full density r

(n)
m , and one can write

[see Eq. (22)]

S (irr)t — oN exp(−oy)=oNŒQ oN, (36a)

whereNŒ is the number of particles at time (n+1) y.
The mixing term (24) can be expressed by means of the total entropy

(19) to obtain

S (irr)mix=
1
y
(e−oy−1) Stot Q −oStot, (36b)

and in view of r0=rN+1=rB=0 the boundary contribution (25) becomes

S(irr)b =−
a
y

AN
L
sin

p

N+1
3r 1r
l
2(N−1)/4 ln 5AN

Lrg
1r
l
2(N+3)/4 sin p

N+1
6

+l 1r
l
2−(N−1)/4 ln 5AN

Lrg
1r
l
2−(N+3)/4sin p

N+1
64

=−
a
y

AN
L
sin

p

N+1
35r 1r

l
2(N−1)/4+l 1r

l
2−(N−1)/46 ln 5AN

Lrg
sin

p

N+1
6

+5r 1r
l
2(N−1)/4−l 1r

l
2−(N−1)/46N+3

4
log
r
l
4. (36c)
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Observing that in the macroscopic limit both r and l are in leading order
equal to yD/a2, and that log(r/l)Q av/D, one obtains for the relaxation
contribution to the total irreversible entropy production

S (irr)relax=oN 51−
Pe
4
tanh

Pe
4
− ln 1 N

Lra
p2

2
1+(Pe/2p)2

cosh(Pe/4)
a
L
26−oStot. (36d)

This expression shows the expected logarithmic divergence since
(a/L)Q 0 in the macroscopic limit. On the other hand, the result can
properly be interpreted only after evaluating Stot. In particular, the refer-
ence density ra has to drop out again in the final result.
In the macroscopic limit the sum over m in the definition of Stot

becomes an integral. By using Eqs. (32) one finds

Stot=−AN F
1

0
dx exp 1 −Pe 2x−1

4
2 sin(px)

× ln 5AN
Lra exp 1 −Pe

2x−1
4
2 sin(px)6 . (37)

Applying the relation (34), we see that the specific entropy

Stot=Nf 1Pe, N
Lra
2 (38)

is a function of the Pèclet number and of the ratio ofN/L and ra, i.e., of
the average density in the system and the reference density respectively.
This ratio is another dimensionless number, that involves the parameter ra

selecting the origin of the entropy scale (which, as mentioned earlier, is
an arbitrary number in classical physics). The total entropy cannot be
evaluated exactly. However, to obtain its behavior in leading order for very
large and small Pèclet numbers it is sufficient to approximate the expres-
sion under the logarithm by its maximum value. In the two limiting cases
one thus finds in leading order inN

Stot=˛ −N ln 1Pe N

raL
2 for Pe± 1,

−N ln 1 N
raL
2 for Pe° 1.

(39)

Based on these forms of the total entropy one can see, that for any finite
time it has a finite, nonzero value. In the asymptotic case tQ. the total
entropy vanishes with the number of particles.
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In the limit a° L, this implies for the total specific entropy produc-
tion

P (irr)=
S (irr)relax
N
=˛o ln 1Pe

−1 L
a
2 for Pe± 1,

o ln
L
a

for Pe° 1.

(40)

The result shows the expected logarithmic divergence due to the boundary
terms. The divergence is an immediate consequence of the vanishing of the
particle density at the boundaries, and arises notwithstanding the fact that
the associated entropy is finite.5 The failure of the arguments put forward

5 A straightforward calculation shows that at the boundaries the divergence of the entropy
current also involves a diverging term, which drops out with the one in the entropy produc-
tion in the entropy balance.

in Section 2 to cope with this feature should be considered as an example
clearly demonstrating the possible pitfalls of efforts to characterize ther-
modynamic properties by global dynamical-systems related quantities. The
reason for the breakdown of the prediction (5) lies in the fact that the
argument leading to this result focuses on the shrinking of the support of
the measure by assuming the smoothness of the distribution along the
unstable manifold. It thus entirely disregards that the density is very
inhomogeneously distributed around the absorbing boundaries. It should
also be emphasized that the result obtained for the diffusive case Pe° 1
is the analog of the thermodynamic expression (1) since in this case
r=Np/(2L) sin(xp/L), such that the parameter a of Eq. (1) takes the value
a=Np/(2L2) and Da=No/2. The difference by a factor of 1/2 is due to
the fact that Eq. (1) gives the contribution of one end only.
In summary, the divergence of the irreversible entropy production near

absorbing boundaries is due to the assumption of zero density and of the
validity of the advection-diffusion equation near the boundaries. A way to
avoid this divergence is to go beyond thermodynamics and to use a micro-
scopic approach. An example of this is the multibaker map in its original
form, with finite cell size a, where the coarse-grained cell density evolves
according to the discrete advection-diffusion equation (10, 12).

5.2. Influence of a Small Background Density

We now assume that rB is nonzero but much smaller than rm except
for a narrow layer around the boundaries where the sine of (33) approaches
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zero. In that case Eq. (28) gives an upper bound to the ratio of densities at
successive times, that is very accurate in the interior of the system. Conse-
quently, the evaluation of (26) carries over except that the boundary term
S (irr)b picks up contributions due to the finite density rB in the cells 0 and
N+1. In the macroscopic limit this term becomes

S (irr)b Q −o(N−N (.))11+ln rB
ra
2 % −oN 11+ln rB

ra
2 . (41)

Since the total entropy Stot and the contribution S
(irr)
t to the entropy pro-

duction do not significantly change for a sufficiently small background
density, the full entropy production becomes in the macroscopic limit

S (irr)relax=−oN ln
rB

ra−oStot. (42)

After substituting Stot from (39), we obtain the specific irreversible entropy
production forN±N(.),

P (irr)=˛o ln 1Pe
−1 N

N (.)
2 for Pe± 1,

o ln 1 N
N(.)
2 for Pe° 1.

(43)

The result clearly shows that the logarithmic divergences in the entropy
production of the previous case are due to the vanishing of a physically
indispensable background density rB.

6. DISCUSSION

The result (43) involves only well-behaved macroscopic quantities,
and the logarithm of the ratio of the numberN of particles in the system
over the number N (.)=rBL of particles approached in the steady state.
At intermediate times, where N is still much larger than N (.), the ratio
N/N(.) decreases to a good approximation exponentially like exp(−ot)
such that the rate of irreversible entropy production starts to decrease
linearly like −o2t. During this time regime the boundary contribution is by
a factor of log(N/N(.)) larger than the bulk contributions accounted for
by Eq. (5). Hence, even in the more realistic setting accounting for a finite
background density, Eq. (5) only describes a sub-dominant contribution to
the entropy-production rate. The reason for its failure is that the contribu-
tions arising from the spatial distribution of the particles and the induced
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inhomogeneous particle currents are not adequately taken into account by
an entropy based solely on the conditionally-invariant measure.
In spite of the strong contributions due to the boundary terms, the

entropy production remains proportional to the escape rate o even in more
general situations. Besides for the short times, where this follows from
Eq. (43), this can be easily illustrated in the long-time regime, where it
applies to any thermodynamically relevant system, whose coarse-grained
density evolves according to the advection-diffusion equation.
We now derive this assertion in a thermodynamic setting of a density

distribution r(x) — rB+DNk(x), whereN is the instantaneous number of
particles, and r(x) is close to the background density rB. Since r(x)
evolves according to the advection diffusion equation with particle current
vr(x)−D DN “xk(x) the total entropy production is

S (irr)=F dx
r(x)
D
1v−D DN “xk

r(x)
22

%
v2

D
F dx r(x)−

(DN)2

rB
D F dx k(x) “2xk(x)

%N
v2

D
+o
(DN)2

N(.) g(Pe) (44)

where g(Pe)=> dx k2(x) is a function of Pe only. The corresponding irre-
versible entropy production due to relaxation is S (irr)relax=S

(irr)−N v2/D. In
the second line in Eq. (44) the term proportional to “xk does not appear
since its integral vanishes. Moreover, an integration by parts was used to
obtain a second spatial derivative of the density which, according to the
advection-diffusion equation, is proportional to its time-derivative, i.e., it
amounts to −ok for the slowest decaying mode k (again we use here that
terms proportional to “xk and k “xk vanish under the integral). The func-
tion g(Pe) depends on the details of the system. Thus, the specific irrever-
sible entropy production taken with respect to DN is

P (irr)=
S (irr)relax
DN
=o

DN

N (.) g(Pe). (45)

We emphasize that exactly the same result can explicitly be derived for the
multibaker dynamics. After taking the macroscopic limit one then also
obtains the particular form of g(Pe).
Equation (45) implies that even in a general thermodynamic setting the

relaxational entropy-production is proportional to the escape rate o, which
characterizes the approach towards the stationary state. In contrast to the
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dynamical-system arguments of Section 2, which based on the escape-rate
formalism, the term involves in general a non-trivial function g(Pe) of the
Pèclet number, and it has an amplitude DN/N (.) that is exponentially
decaying like exp(−ot).
It will certainly be interesting to investigate more closely the connec-

tion between the escape-rate formalism and the decay to systems support-
ing non-trivial stationary states. Another step in this direction, which
complements the present approach, was taken by Bob Dorfman and his
collaborators, (32–34) who recently discussed the approach towards equilib-
rium in systems with periodic boundary conditions.
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